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Abstract. The approximation of a non-resonant orbit with a sequence of m n a n t  orbits is 
considered for the holomorphie maps of the complex plane. The problem is motivated by 
Hamiltonian dynamics (Greene's conjecture) and we consider a mmp1exih-d Hamiltonian map 
in the region (far from the section of real dynamics) where it can be reduced 10 a holomorphic 
map of a single complex variable. For a sequence of maps in normal form with linear resonant 
frequencies, the limit to a linear map with non-resonant diophanline frequency has a simple 
interpretation: the flower-like resonant orbits become circles due to the haease of the number 
of pelah and the freezing of radial motion. A similar non-uivial result is proved for small 
pe&ations of the n o d  forms by investigating the behaviour of the conjngation functions. 

1. Introduction 

The resonant structures for Hamiltonian systems have been intensively investigated they 
are the bridge between the ordered quasi-periodic orbits (i.e. KAM ton) and chaotic motion. 
However, a complete theory is still lacking. The perturhative approach based on Birkhoff 
normal forms gives rise to an asymptotic series which has a truncation that conveniently 
describes the geomehy of resonant families 111. 

Phenomenological analysis has been carried out concerning the way that a family of 
resonant orbits approaches a non-resonant orbit. This limit is of great importance since it 
allows one to detect the critical value of a KAM torus. According to the well known Greene 
conjechue [2], a KAM torus can be approximated by a family of resonant orbits (chains 
of islands) of increasing period; moreover, before the break up any resonant orbit has an 
equal number of elliptic and hyperbolic fixed points, whilst after the break up they are all 
hyperbolic, and the torus becomes an Aubry-Mather Cantor set. This conjecture provides 
a very accurate computational tool to determine the critical values of invariant curves for 
area-preserving maps. The statements described above have not been proved, and even the 
possibility of approximating a KAM torus using a sequence of resonant orbits before the 
break up has not been demonstrated. 

In view of the difficulty of this problem we consider a related problem which can be 
investigated using the Bore1 transform techniques. After describing the link which exists 
between a complexified area-preserving map and a holomorphic map of a single complex 
variable [3,4], we show how the invariant curves of a map with a non-resonant linear 
frequency (Siege1 problem 151) can be approximated by the orbits of a sequence of maps 
with resonant linear frequencies [6]. 
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The corresponding normal forms illustrate the nature of the limit in the 'integrable' 
caset: the sequences of flower-like orbits of the resonant normal forms converge to 
the circular orbits of the non-resonant map via the freezing of the radial motion. A 
similar picture holds in the 'non-integrable' case where we consider a sequence of small 
perturbations of the resonant normal forms which has a limit that is a linear non-resonant 
map with a small perturbation. A rigorous proof of the convergence of non-resonant orbits to 
resonant orbits is based on the convergence of the sequence of the conjugation functions that 
transform the 'non-integrable' maps into their normal forms. This result has been proved 
at the first-order in the small perturbation parameter; in this simpler case the conjugation 
functions satisfy a homological equation rather than a nonlinear functional equation. The 
conjugation function and its corresponding limit are considered here at the level of the 
formal series, while the complete proof is given in [7]. 

The plan of this paper is as follows. In section 2 we give the connection between 
the Hamiltonian and the holomorphic models. In section 3 we analyse the limit in the 
'integrable' case and discuss the change in the geometry of the orbits. In section 4 the 
statement for the 'non-integrable' case is given and a sketch of the proof is outlined. 

2. Hamiltonian models and holomorphic mappings 

The complexification of a Hamiltonian map has been considered for the standard map where, 
for an invariant curve with non-resonant frequency, the images of the analyticity strips in 
the angle 0 were shown to be domains with fractal boundaries [3,4]. For the vanishing 
perturbation E + 0 the width of the strips tends to CO; the width decreases to zero at the 
critical break-up value of the invariant curve. For E + 0 and in the neighbourhood of 
the analyticity boundaries the map can be approximated in the z = e'B plane [8] with a 
holomorphic map of z. 

2.1. Non-resonant case 

In order to extend our work to the resonant case we consider complexified area-preserving 
maps in the neighbourhood of an elliptic fixed point. The limit is easily understood if we 
consider the non-resonant normal form of the map, namely an integrable mapping, which 
reads 

where is a real analytic function. The real area-preserving map is recovered by setting 
q = {* (where the * denotes the complex conjugate): one obtains an amplitude-dependent 
rotation. One can choose ( and p = ~ T J  (or equivalently (q, p))  as independent variables 
and the map (2.1) reads 

Fixing p we obtain a map of the complex < plane with constant frequency. 

t We will use the word 'integrable' and 'non-integrable' for holomorphic maps to denote the n o d  form and 
pmrrbations of the normal forms respectively; this terminology is borrowed from Hamiltonian dynamics. 
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Similarly, a generic polynomial map F = ( f ( z ,  w), g(z, w)) (where z ,  w E @*) can be 
expanded in a Laurent series of z with coefficients depending on zw: 

N 

2' = f ( z ,  w) = z f o ( z 4  + zC(Zkfk(zw) + z-kf-k(zw)) 

(2.31 
k=I 

N 
w' = g(z, w) = wgO(zw) + w ~ ( W k ~ k ( Z W )  + W-'g-k(ZW)) 

k=l 

where fo = eiw + O(zw),  fk = 0(1), f-I = O(zw) and f - r  = O ( ( Z W ) ~ - ' ) .  Letting, in 
this case, z = f i e ib  and w = fie-i" we see that for the real section w = z* of the map 
fk, the Fourier components are f-k. We can transform the map into a normal form plus a 
remainder term with a polynomial transformation of order N :  

F o  0 = 0 0  ( U + E )  (2.4) 

where E = O(l<qlN'*) and the conjugation function 0, which maps the normal coordinates 
( and q to the initial coordinates z and w, has an expansion similar to (2.3). 

Letting (p.6') be defined by C = f ie i s  and q = fie-'8, we consider the following 
two limits: 

(i) p -+ 0 and Im6' -+ -CO keeping t finite, which implies q + 0 
(ii) p -+ 0 and Im6' -+ +cu keeping q finite, which implies < -+ 0. 
The conjugating function 0 has a Laurent expansion analogous to F (see equation (2.3)), 

but it can be reduced to a Taylor series in 5 for the first component in limit (i), or to a 
Taylor series in q for the second component in limit (ii). Indeed, in the first case one has 
< k t l @ k ( < q )  = O(ckt1) are finite, whereas <-'+l@-t((q) = o(qk-') vanish. For the initial 
map F, limit (i) corresponds to constraining zw to a small value and keeping z finite; its 
first component f then becomes a Taylor series in z .  The function 0 is then given by a 
Taylor series in c, and conjugates F with the linear map <' = exp(iQ(p))C. 

The analysis can be made rigorous by applying the KAM procedure [9] to the map U + E  
for any value of p such that Q ( p )  is diophantine. Then, for very large negative or positive 
imaginary parts of the angle U + E,  one defines two analytic maps of U2 which can be 
conjugated with their linear parts. 

2.2. Resonani cme 

When the linear frequency of the map 00 is close to a resonant value 2rrpJq ( p  and q 
integers with no common divisor) then the resonant normal form is given by a map U 
which commutes with the discrete group of rotations of an angle 2xJq: 

+ C c(Se?Ae&rl) + C-"A-e&q)) 
N t 9  

e= I 
t' = 

(2.5) 
N I 9  

U :  [ 
q' = $n(t")~ + r l ~ ( q e 9 B e q ( t ~ )  + q-"B-&q)) 

e=] 

where A& = 0(1) and A-Q = O((<q)'9-'). If 00 = n(0) = 2 n p / q  + 6 and 
Q ( p )  = 2 x p / q  has a real solution 7, then on the plane < = q* where a real area-preserving 
map is recovered, one has a chain of q islands as suggested by the Birkhoff theorem. The 
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interpolating Hamiltonian, which has a flow that agrees at integer values of time f = n with 
the nth iterate of the normal form U, has a pendulum-like structure: 

E Todesco and G Turchefti 

(2.7) 

and in the plane < = q*, one has q symmetric islands of area - 6914 which have centres 
that are a distance p - 6 from the origin. 

In the exactly resonant case Aq = ekiP/q, if we constrain p = t q  to a very small value 
then we obtain from (2.5) a map of 6: in the form of a Taylor series in ( which has a linear 
part A,C. The corresponding resonant normal form in C is a map which commutes with the 
linear part and can be stated as 

In the most general case q is replaced by kq in the denominator of (2.8), but for simplicity 
we consider k = 1. 

Let us consider the orbits of an area-preserving map in the neighbourhood of a chain 
of q islands and, more precisely, only those orbits which join the q hyperbolic fixed points 
(i.e. the separatrices); if we let all the hyperbolic fixed points collapse on the origin, we 
obtain a mapping on the separatrices which have dynamics and phase space analogous to 
the resonant normal form of period q of the holomorphic mapping (2.8). In the following 
section we will illustrate the dynamics of this map, showing how in the limit q + 00 

it is possible to recover a circular motion, which in the Hamiltonian case is analogous to 
approximating a KAM curve with a sequence of separatfices issued from hyperbolic fixed 
points of increasing order. 

3. The 'integrable' case and the geometry of the orbits 

We consider the maps of C and describe how a sequence of normal forms with resonant 
frequencies can approximate a linear map with a non-resonant diophantine frequency; 
this corresponds to the integrable case of Hamiltonian dynamics since the maps exhibit 
explicit iterations and invariants of motion. The normal form [IO, 111 given by the standard 
shift (2.8) commutes with the symmetry group <' = hqr generated by the linear part of the 
map, where kq is the qth root of unity. The map has a trivial iteration 

for integer t which can be extended to f E R in order to build an interpolating flow, and has 
explicit invariant I ( ( )  = exp(2ni/<q). The dynamics of the map follows the well known 
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Figure 1. Phase pomait of the intwpolating Bow (solid line) and of tk first 1000 itexam (dots) 
relative IO four different initial wnditions of the standard shift with q = 3 (left-hand side) and 
q = 5 (right-hand side). 

flower structure [6]: in figure 1 the orbits of the interpolating flow (solid line) and the first 
1000 iterates of the map (dots) are shown in the case k = 1, q = 3 (left-hand side) and 
k = 1, q = 5 (right-hand side). 

The normal form dynamics can be decomposed into two components: the first 
component, responsible for the motion along the petal, is a map tangential to the identity 
with interpolating flow 

(3.2) 

and the second component, responsible for the angular motion, is determined by the linear 
map with interpolation Air. The linear map e' = hq( determines a jump from one petal 
to another by skipping p - 1 petals. When p ,  q -+ co and Aq + A = exp(io), the normal 
form tends uniformly in 111 < R < 1 to the linear part. independently of the arithmetic 
properties of the frequency o. From the geometrical point of view the transformation of 
the petals into closed circles is caused by the freezing of the radial motion on the petals. 
In fact, if we compute the radial velocity of the interpolating flow (3.2) we find 

(3.3) 

In the limit q + co the motion along the petal is frozen and only the angular motion from 
one petal to another due to the linear map remains active. When q is increased the petals 
become thinner and thinner; in the l i t  q + co they disappear, giving rise to periodic or 
dense orbits on the circle if w / ( ~ R )  is rational or irrational. 

This is shown in figures 1 and 2 which plot the orbits of the interpolating flow (solid 
lines) for increasing values of q = 3, 5, 8 and 13 and for 1000 iterates of the map. In the 
case of q = 8 and 13 one already observes the freezing of the radial motion along the petals 
(see figure 2). 
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Figure 2. Phase portrat oilhe inerpolulng flow (solid line) and oirhe fim IWO itenter (dots) 
rehove to four different initial conditions oi Ihe stvdlrd shiR with q = 8 (IcR-hmd side) and 
q = 13 (right-hand side). 

4. The 'non-integrable' case 

We now consider a sequence of mappings wluch are small perturbations of the normal 
form (2.8) corresponding to the non-integrable case of Hamiltonian dynamics: 

where f ( z )  is taken independent of q and analytic on the disc DR = ( IzI < R) with R 1. 
Contrary to the previous case, we have to restrict the frequency of the limit mapping to 
be sure that invariant closed curves exist in the neighbourhood of the origin, in accordance 
with the theory developed by Siege1 [5], Bjuno [12] and Yoccoz [ 131. Therefore we assume 
that the eigenvalue h, = exp(2nip/q) tends to 1 = exp(iw), and w satisfies the Bjuno 
condition for the homological equation: 

(4.2) 

where qr are the denominators of the approximations of w given by the continued fraction 
1.51. If w is a diophantine number, condition (4.2) is always satisfied. 

When q + CO. the resonant map Fq tends uniformly in DR to the mapping 

F ( z )  = hz + € f ( Z ) .  (4.3) 

The orbits of F(z )  in the neighbourhood of the origin are deformed closed circles and one 
can build a convergent transformation \1l which conjugates the map to its normal form, 
i.e. the linear part t' = hc. If one expands the transformation in a power series of E, 
5 = Q(z) = z + c@(z)  + O(& the first-order term satisfies the homological equation 
@(hz) - h@(z)  = -f(z) which has the solution 

(4.4) 
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Using the Brjuno condition one can prove that * is analytic in a neighbourhood of the 
origin. 

In order to analyse the dynamics of the small perturbation F, of the resonant normal 
form, we perform a conjugation with the integrable map and discuss the analytic properties 
of the conjugating function for the homological equation. In order to simplify the analysis, 
we conjugate the resonant map F, to a preliminary normal form at first-order in t defined 
as 

through the hansformation 

< = Y,(Z, = z + € * , ( Z )  + 0(€7 
which contains only non-resonant terms 

At first-order in t, the functional equation Y, o F, = U, o Y, reads explicitly as 

@ q ( @ q ( Z ) )  + f ( z )  = u; ( z )@dz)  + uC’(z) 

(where ub(z) is the derivative of u,(z) with respect to z )  and can be solved by projecting 
into the subspace of normal formst and its complement. Letting l l  be the projector into the 
space of normal forms, we obtain 

The last equation can be solved explicitly if we replace U; with Aq. To achieve this we add 
a remainder term to the preliminary normal form, that is we choose 

U&) = U,(<) + E $ ) ( < )  +Er,(<) (4.10) 

where r,(<) = O({qfz) is not in normal form. Then the remainder term appears in the 
1.h.s. of equation (4.8) which can be written as 

(4.12) 
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In the following, we will prove that the formal solution of the functional equation (4.12) 
for is given by 

E Todesco and G Turchetti 

and, therefore, in the l i t  q --f CO and 1, + A, one formally recovers the conjugation 
function of the homological Siege1 problem (4.4). Similarly, one can verify that the 
preliminary normal form ur)(F) and the remainder r&) formally vanish in the limit 
q + CO; as a consequence the preliminary normal form plus the remainder formally 
converge to the normal form. 

In order to prove (4.13). we introduce the mapping w = 2-9 of C to 0, and we define 

(4.14) 
- - 
* ( w )  = *(w-'")  = @ ( z )  

which are given by the series expansions 

f ( w )  = (1 - n) f (w-"9)  = (1 - r I ) f ( z )  

* - m - 
@&J) = CIClq,nw-lt/q f (w)  = fnW-"f4. (4.15) 

"4 

The first functional equation of (4.12) then reads 
- 
@ (e-*'P(I + w ) )  - i q V ( w )  + T ( w )  = 0. (4.16) 

A solution can be found introducing the Borel transforms *,,~(t) and f B ( t )  of F ( w )  and 
f (w)  respectively: 
- 

where in the second integral the integration path on f = r / w  is a shaight line emerging from 
the origin with the phase of w-' ,  and &B is the Borel transform defined by the analytic 
continuation of the series 

(4.18) 

In the second integral of (4.17) the integration path can be changed to straight lines with a 
phase different from that of w-l to perform the analytic continuation in w 1141. 

Using the relation &(t) = e-'ufB(ut), where g(w) = f (u- ' (w + l)), the Borel 
transform of (4.16) reads 

e-'V9B(e2niPt) - A ~ F ~ ~ ( ~ )  +TB(t) = 0. (4.19) 

Replacing t + eZnipt in (4.18) and multiplying by e-'A;' one obtains a new equation. 
Repeating this procedure on the new equation q times one obtains q equations; taking the 
sum, ail the terms with TqB(eZnBpf) with k = 1,. . . , q - 1 cancel and one obtains 

(4.20) 
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Replacing the expression of J B ( t )  in (4.20) we obtain 

Taking the Laplace transform after some algebraic manipulation, result (4.12) is obtained. 
It can be proved that both U, and qq are given by a collection of 2q functions analytic 

on sectors of aperture smaller than 2irJq. In the limit q + w and hQ + I ,  one can 
easily verify that U, formally converges to U = A(, and qq formally tends to the solution 
of the homological equation (4.4). Moreover, using the subsequence of q,, p r  given by 
the continued fraction expansion of o/2rr, one can prove that the convergence is not only 
formal but that analyticity in a close neighbourhood of the origin is recovered in the l i t .  
More precisely, the following result holds. 

Proposition. If o satisfies the Brjuno condition and the subsequence qr ,  p ,  approximates 
o according to the algorithm of the continued fraction, then for r 3 00, 11.4, uniformly 
converges to on a neighbourhood of the origin. 

The proof is based on the Cauchy estimates of the remainders of the series. Using 
the Bore1 and the Laplace transform, one can prove that the formal series defining the 
conjugation function can be re-summed to 2q functions, analytic in sectors of aperture 
smaller than k / q .  The Bore1 transform has poles with residues different to zero that are 
responsible for the sectorial analyticity, and, therefore, for the divergence of the Taylor 
series. In the limit q + w a function analytic in a disc is recovered since, provided that 
oq + o where o/(zir) is a Brjuno number [12], these residues vanish. A Cauchy estimate 
of these 2q functions show that they all uniformly converge to the same function, analytic 
in a disc. 
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